

ゼロワン 球状黒鉛鋳鉄テストピースの

自動研磨及び球状化率画像自動解析装置

所定のシェル鋳型に最終溶湯を注湯されたテストピース(TP)を装置へ投入後 5~6分にて球状化率判明できます。(弊社シェルTPへ注湯)

NAP-01の特徴

インライン設置装置

全自動

ライン中に判定

■ 乾式

- 自動研磨 自動検鏡
- ■自動解析

- 判定時間6分~
- 人為差無し

NAP-01の特徴

インライン設置

乾式のため、従来ではできなかったインライン(現場)の設置が可能となりました。研磨工程及び、検鏡組織の自動読み取りによる人為差による誤差全くありません。

又、この検査結果は数分で判明する為、溶湯処理方法へただ ちにフィードバックできます。

全自動

NAP-01は研磨から球状化判定まで必要な工程を全自動で行います。(テストピース作製は別途必要です)

自動研磨

自動検鏡

自動解析

ライン中に判定

球状化判定まで最速6分で行うことができるので、製品がラインの中にある間に良否の判定を 従来出すことが可能です。

NAP-01

● 従来との比較

	NAP-01	従来の方法
研磨方式	乾式	湿式
設置場所	インライン	検査室
判定時間	6分~	1日程度
研磨精度	検鏡可能な状態まで研磨	作業者による
検 鏡 点	TPに対して固定の10視野の平均	作業者による
保存	データー保存	現物保存
人 為 差	なし	あり

NAP-01は大幅なコスト削減が可能です

インライン 設置

全自動

ライン中判定

人件費削減

不良の 後工程流抑止

1 自動研磨

● 高速研磨

従来の湿式ではできなかった、インライン(現場)での設置が可能。

● 安定した研磨精度

研磨終了までの時間が早く(5分~)、ライン中にTP良否の判定を 出すことが可能。

● 人為差なし

研磨工程を6段階式を採用することで、安定化した研磨精度を 有しています。

操作

機械組込式・液晶ディスプレイ

安全対策

上部開閉式カバー

推奨JIS規格 規定TP型

TPは測定用消耗品により 検鏡精度を上げられます

複数TPセット可能

2 自動検鏡

- 光学アナログ式 検鏡は×100相当。
- デジタルデーター保存 撮影画像の保存が可能。
- 自動球状化判定

設定した10視野を自動的に測定し、使用画像の選択が可能。 測定点の良否に関係なく測定でき、より公正な検鏡が期待できます。 また人為差がありません。

3 自動解析

SG-Analyzer

- デジタルデーター保存 解析データーの保存が可能。
- 自動球状化判定

設定した10視野の平均値を表示。 測定点の良否に関係なく測定していますので、 より正確な平均値を取得することができます。 また自動判定のため、作業時間や人為差がありません。

機能及び主仕様

●使用条件

(1)使用環境

設置場所 室内 10~400 周囲温度

100回/日程度 (2)使用頻度

測定試料

(1) 形状 円柱状(研磨側のエッジ部は面取り形状)

外径 φ20 長さ 50±5mm (2)材質 鋳鉄

測定、その他

(1)測定方式 画像処理法による

(2) 測定準拠 新JIS (G5502-2001) による

(3) 処理時間 5~6分以内

機器仕様

●搬送

(1) チャック左右(X軸)

駆動方式 ロボシリンダ

(パルスモータによるボールネジ駆動)

ボールネジ径 φ10

移動速度 max230mm/sec

ストローク

モータ出力 パルスモーター(アブソリュート)

(2)チャック上下(Z軸)

ガイド付エアシリンダ 駆動方式

ストローク 60 シリンダ径 φ16

(3)チャック

チャック方式 3爪エアーチャック方式

直径で16 チャック爪ストローク チャック爪 **試料径20φ用**

チャック把持力 58N(5.9kg) I.ア-田0.4MPa 把持点30

●研磨機

(1) 研磨方式 乾式ホイル研磨

(2) 研磨ホイル仕様

	処理	ホイル名称
第1工程	荒研磨	荒研磨砥石
第2工程	荒仕上	荒仕上砥石
第3工程	中仕上	中仕上砥石
第4工程	細仕上	細仕上砥石
第5工程	仕上	仕上ディスク
第6工程	拭き取り	拭き取りディスク

φ100 ホイル径

センターキャップによるワンタッチ商脱 脱着方式 (3) 研磨送り速度 max50mm/sec

max80N(8.1kg エアー圧0.4MPa) (4)研磨圧力

チャック上下シリンダ加圧式 (5) 研磨加圧方式

(6) 加圧制御 電空レギュレーターによる加圧制御方式

(7)モーター容量 1.5kw (8) 駆動方式 平端車(m=1)

各工程毎に減速して対応

カバー及び安全対策

(2)メンテナンス

(1)カバー方式 全閉式カバー

前面カバー上部開閉式

右側塩ビ扉開閉式(試料受入れ取出用)

研磨ホイル交換 前面扉、研磨BOX扉より 右側塩ビ罪より 試料受入れ取出し

研磨粉(集顯機)回収 正面制御盤開閉 雷安 正面扉より

(3) 騷音対策 騒音発生部は機器内に収納し、85db以下

上部カバー、受入部カバー、開放時全停止機能付

●解析

(1)解析方式

(4)安全対策

(2) 測定ケ所

(3) 測定点移動

X輪(左右) Y軸(前後)

制御

(1)制御盤

(2)操作器

表示器

(3)表示設定項目

CCDカメラによる画像処理

70ヶ所

X-Y位體制御

チャックでワーク把持移動(位置入力)

カメラ前後移動(移動量調製…アジャストネジによる)

φ20試料:2mm

機側組込式 制御盤上部組込式 液昌式ディスプレ

(ア)研磨回転数

(イ)研磨時間

(ウ)研磨速度

(工)研磨圧力

機内組込式

4.0m3/min

125mmH₂O

500M

φ70

Ø75

(4)コントローラー シーケンサー

●集應装置

(1)設置位置

(2)集磨方式

風窟 (3)能力

静圧

(4)モーター出力

(5) 吸込口径

(6) 集歴ダクト径

(7) 集塵パケット容量

(8) 運転方式

2.01 研磨機と連動

(2) 機械の重量

●その他 (1)機械の大きさ

1200 (W) ×600 (D) ×1350 (H)

成形カセットフィルター方式

(本体) 400kg

●ユーティリティ、他

(1)電源 供給電源

使用電源

200/220V 50/60Hz AC3相 200/220V 50/60Hz 動力回路 AC3相

50/60Hz AC単相 100V AC単相 100V 50/60Hz

操作回路 空圧電磁弁回路 DC24V 電源容量 6kVA

(2)使用空気圧 (3)流量

(4) 塗装色

0.4MPa以上(4kg/cm²)ドライエア

751 /min以 E

5GY8.5/0.5

株式会社 ナカヤマ

担当:水野 090-1832-6641 m-naoki@nakayama-meps.co.jp

第2版 2016年4月 ■ 公式 サイト http://www.nakayama-meps.co.jp/

第1版

2012年4月

■東日本営業所 TEL.024-545-6588 FAX.024-544-6588

■ 本社 〒451-0066 名古屋市西区児玉3丁目37-22 TEL.052-521-1171(代表) FAX.052-521-1180 E-mail info@nakayama-meps.co.jp